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SUMMARY

The rms error in the source bearing estimates was observed to in~-
crease with decreasing signal-to-noise ratio (SNR), when the model
order (p) approached the number of array elements (N = 31), and when
the source of interest was not well separated from adjacent sources.
Typical rms errors observed for isolated sources (for p = N/3) ranged
from 0.02 A/D at a signal-to-noise ratio (SNR) of 17 db to 0.5 A/D at
-9 dB. The statistical variability and number of spurious peaks in the
array response were observed to increase rapidly as p approached N. At
an SNR of less than O dB the array response, even when averaged over 50
independent data sets, indicated numerous spurious sources when the
model order was large. The equivalent number of degrees of freedom (df)
of the array response, estimated as twice the square of the average
divided by the variance of the response, were calculated and compared
with df = N/p as conjectured by Parzen (1970) and demonstrated (asymp-
totically) by Kromer (1969). Parzen's conjecture was consistent with
the observed results for p << N, but was found to be very optimistic
at high model orders. It was also found that the spatial response to an
individual point source increases in width in the presence of nearby tar-
gets as well as with decreasing signal-to-noise ratio; and while the
spatial response to a single point source is typically much narrower for
maximum entropy processing, the minimum angular separation required for
the resolution of adjacent sources is only slightly less (roughly a fac-
tor of one-half) than that of a conventional beamformer even at high
signal-to-noise ratios.

L)}
DISTRISUTION/AVAILABILITY CO0B3

—AVAIL, mi/w WPESIAL

Al

R T e e o ——

ek A e Ll s L o




NCSC TM-254-79

TABLE OF

MOTIVATION, . . . . .

MAXIMUM ENTROPY SPECTRAL ANALYSIS
SIMULATION AND RESULTS. . .
Choice of Model Order. . .
Bearing Error. . . ., , .

Peak Widths, , , . ,

LIST OF ILLUSTRATIONS

Figure No.
1 The Array System
2 FPE Versus Model Order
3 Average Array Response
4 Degrees of Freedom Versus Model Order

i1

CONTENTS

Page No.
. 1
. 4
. 6
. 7
. 13
. 14
Page No.
2
8
9
12




e VR

NCSC TM-254-79

MOTIVATION

Consider the problem of estimating the bearing and strength of a
single point source using a linear array where the source may either
be actively generating its own signal or reflecting a transmitted wave-
form. Assuming the source and receiver are separated sufficiently to
permit approximating the received signal as a plane wave, the fields
in the vicinity of the array may be written as

8(x,t) = p(t-a-x) (1)

vhere a = v/|v|2, ¥ is the velocity vector of the plane wave, and x

specifies the field point, Further, if the signal is assumed to be
narrowband, then

b e -1(w°;';-wot)
8(x,t) = w(t-a-x)e (2)
PRE % 1w asx
wvhere w(t-ax)e is the complex envelope of the waveform observed

at the field point x. The array geometry is shown in Figure 1. Assuming
the linear array consists of N elements spaced Ax apart and lies along

the x axis of the coordinate system with the origin at one end, then the
output of the nth element is

zn(t) = g(nAx ;.t)

—12wkanx 1o t
= w(t - nAx ax)e e Y% 3

wvhere x 18 a unit vector along the x-axis,

1
kx wa =% sin (8)

is the x component of the vector wave number, 6 is the angle between the
direction of propagation, and the x axis, A is the wavelength, and a_ =
a*x = a sin (6) is the x component of the inverse velocity vector.
Equation (3) may be approximated as

=127k _nAx {w t
zn(t) = w(t) e e " (4)

(Text Continued on Page 3)




NCSC TM-254-79

WALSAS AVEYV HHL °1 JdN91d

2 s B AL O TR SR SRSINIUES - QAL - S I@l.ll@.l»l D D
8

sjuawald N
JOo Aeaay aeaurT]

aABM duUBT{
OT13BWOIYD0UOK
Sutoueapy

£
,

WaISAS
33BUIPICO)
3o urdrag




i« g A

e p————

NCSC TM=254-79

if the transit time across the array is small compared to the time of
variation of the signal envelope; i.e., the inverse of the signal band-
width. Finally, the carrier term in Equation (4) may be removed by
coherently detecting zn(t) to obtain

—if'k\nﬁx
z&(t) = w(t)e : . (5)

All of the intormation relevant to the source strength and bearing

is contained in the z'(t) and their relative delay times'!’. The above
equation indicates that, under the assumptions made, the fields measured
along a linear array at time t vary sinusoidally as a function of x with
frequency ky cycles/unit distance. Knowledge of K, and « are sufficient
to determine the direction of propagation in a nnnJispvrs}ve medium when
the velocity of all possible plane waves are required to lie in the xy
plane since kv may be obtained from the dispersion relation

2 2 @mieg
l\" + k\_ = ";:—~-~ (())

where ¢ is the velocity of propagation. Thus, estimating the bearing to
a single point target is nothing more than estimation of the frequency

of the variation along the array. 1t is evident from the discussion
above that the problem {s simply one of spectral estimation. The conven-
tional approach to this problem is beamforming which for the narrowband
case reduces to calculation of the Discrete Fourier Transform of the
array element outputs at a particular time. The search for high spatial
resolution quite naturally leads to algorithms developed for high reso-
lution spectrum analysis.,

In an active sonar system the coherently detected array outputs are
a superposition of terms of the form given in Equation (5), where w(t)
is an appropriately delayved version of the transmitted signal envelope.
The principal problem is to resolve scattering centers lving at roughly
the same range (more precisely in the same range cell where a range cell
is one-half the velocity of propagation times the inverse of the trans-
mitted signal bandwidth) since scattering centers lving at differing
ranges may be distinguished in the time domain,

In a passive system the problem is to resolve sources emitting
signals which overlap in time. 1t is important to improve the

S — -— R — -

(1)1, N. El-Behery and R. H. MacPhie, Maximum=-likolihood Pstimation of
Source Parameters from Time Sampled Outputs of a Linear Array, J.
Acoust. Soc. Am. 62, p. 125=134 (1977).

|
|



NCSC TM=-254-79

signal-to-noise (SNR) as much as possible by cohereat intepration prior
to spectral (bearing) estimation as the maximum entropy method is quite
sensitive to noise. In either case the appropriate coherent integration
times are limited in the active case by transmitted signal bandwidth, and
in the passive case by the trequency stabilitv of the source.

In many
cases it is possible to improve the estimates still

turther by averaging
the results of multiple independent observations obtained by appropriately
sampling the coherently detected array outputs. This should be used
whenever possible.

The principal interest was in active high resolution sonar systems
for the purpose of localizing and resolving discrete targets where only
a single observation of the coherently detected array outputs was avail-
able. In this report maximum entropyv processing as a means of locating
and resolving point sources based on a single time sample (observation)
of the array outputs will be investigated. Details of the maximum
entropy method will be discussed only briefly in the following section
since these are readily tound in the literature. The principal results
of this study are presented in the SIMULATION AND RESULTS section.

This section begins with a discussion of the cheice of model order, and
its relation to the statistical stabilitv of the array response. This
is followed by a discussion of the effects of SNR and model order on (1)
errors in bearing estimation, (2) the width of the array response to
individual sources, and (3) the minimum separation required for reso-
lution of equal amplitude point sources. When possible our results are
compared with those of other researchers., The report concludes with a
summary of the principal findings.

MAXIMUM ENTROPY SPECTRAL ANALYSI1S

The maximum entropy spectral analvsis technique was first proposed
by J. P. Burg in 1967 as a means of achieving high resolution spectral
estimates'“’ . This approach was later recognized to be identical to
auto-regressive spectral analysis, lincar predictive deconvolution
filtering, and all pole modeling of the spcctrum“). lhe entropv of a
Gaussian band limited time series is proportional to

“‘)Burg. J. P., Maximum Entropy Spectral Analysis, presented at the 37th

Annual International Meeting, Soc. of Explor. Geophys., Oklahoma Citv,
Oklahoma (1967).

(3R, N McDonough, Maximum Fntropy Spatial Processing of Array Data,
Geophysics 39, p. 843-851 (1974

At i ot gt
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where S(f) is the power spectrum, and f is the Nvquist frequency'®',
autocorrelation func-
tion of the time series which is known onlvy over a finite interval.

Burg suggested that the most reasonable choice for the unknown auto-
correlations is the one which maximizes the entropy. Maximization of H

subject to the constraints imposed by the known autocorrelations

The power spectrum is the Fourier transform of the

im=-
plies a power spectrum of the torm
i
)
SEE “i"’.'r"".* o (8
p =14TE AL
: p
1= a e
1

j=1
D ) p gl l

where 1, aj}, .15....1;\ are the coefticients of the p+l length prediction
error filter, and p, is the prediction error‘’’. Burg later suggested
an approach by whisfl the filter coefficients could be estimated directly
from the data‘*’. This approach is based on choosing the reflection co-
efficients (JI;) to minimize the prediction error power obtained from
running the filter both forward and backward across the data and on the
Levinson recursion algorithm, and is outlined in Reference 6. In this
study the maximum entropy array response (spatial spectrum) was calcu-
lated using Equation (8) with the replacements f » Ax, and At > Ak_ and
using the coherentlv demodulated element outputs (at a specified time)
as the sampled complex data series. Burg's method (modified for use
with complex data) of coefficient calculation was used to obtain the
results presented in this report because it is widelv used, and has
been reported to produce resolution superior to the Yule Walker

{

) : v . . . - ~ v ol
*‘Smylie, D. E., Clarke, G. K. €. and Dlrvch, T, J
Irreqularities in the Farth'

N

s Rotation, in B. Alder, S. Fernback,
and M. Rotenberg (Eds.) "Methods in Computational Phvsics, Vol., 13,"
New York: Academic Press, pp. 391-430 (1973).

() Burg, J. P., A New Analysis Technique for Time Series Data, presented
at NATO Advanced Study Institute on Signal Processing, Enschede,
Netherlands (1968).

‘"‘)Anderson N., On the Calculation of Filter Coefficients for Maximum
. .,
Entropy Spectral Analysis, Geophysics, Vol. 39, No. 1, pp. 69=72,

February 1974,
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approach‘v)‘ﬁ). It has, however, been pointed out by Makhoul that the

: Burg method of calculating the reflection coefficients is only one of
a number of "suboptimal" solutions to the lattice minimization prob-
tem?), The complex formulation of the maximum entropy algorithm is
discussed in References 3 and 10,

SIMULATION AND RESULTS

In the following simulations a linear array has been assumed having
31 elements spaced one-half wavelength apart responding to inphase mono-
chromatic signals generated by two point sources. The inphase condition
was chosen because this is the most difficult condition to resolve. The
signals observed by each element are assumed to be corrupted by narrow-
band Gaussian noise which is independent between elements. After co-
herent demodulation the output of the nth element is

- P A0k nlx
z)(t) = I w(t)e N n_(t) 9

=1

where n_(t) is the envelope of the complex noise added to the nth ele-
ment. The SNR's quoted in the remainder of this study are defined as
the ratio of the signal power (generated by one of the sources) to noise
power at the output of each element after demodulation.

At each combination of SNR and target separation 50 data sets (with
independent noise realizations) corresponding to a single time sample of

(3) {bid.

(7)T, J. Ulrych and T. N. Bishop, Maximum Entropy Spectral Analysis and
Autoregressive Decomposition, Reviews of Geophysics and Space Physics
13, p. 183-200 (1975).

(&) y, R, Radoski, P. F. Fougere, and E. J. Zawalick, A Camparison of
Power Spectral Estimates and Applications of the Maximum Entropy
Method, J. Geophysical Research 80, p. 619-625 (1975).

(95, Makhoul, Lattice Methods in Spectral Estimation, in the 'Proceed-
ings of the RADC Spectrum Estimation Workshop," p. 159-173 (1978).

Texas Instruments, Inc., Technical Report No. 1, Advanced Signal
Processing, ALEX(03)-TR-75-01, The Maximum Entropy Spectrum and
he Burg Technique, by T. E. Barnard, 1975,




NCSC TR-254-79

each of the N array elements were examined. Coefficients corresponding
to model orders 1 through 30 were calculated for each data set. Spectra
were calculated corresponding to model orders of 5, 10, 15, 20, 25, and
30. The reported angular separations were achieved by holding the bear-
ing of one target fixed and moving the second target relative to the
first. This was done so that changes in the response to one of the
targets would be related to changes in target separation and not

changes in target bearing. Only parameters of the array response rela-
ted to the fixed target are reported. Some definite trends were
observable in the results,

CHOICE OF MODEL ORDER

The estimation of the order of the appropriate maximum entropy
model ha?vbeen treated by a number of authors. Based on the results
reported ) by Ulrych and Bishop, Akaike's Final Prediction Error (FPE)
Scheme was selected in which the optimum value of p is chosen as that
value which minimizes the FPE given by

-LEP
(PR =N -p P -
Unfortunately, in this application the minimum of the FPE does not ap-
pear to indicate acceptable model orders. Typical results for the
average and standard deviation of the FPE over 50 data sets for model
orders 1 through 30 are shown in Figure 2, Two characteristics of the
FPE are quite noticeable. First, the variance of the FPE increases with
model order, This would appear to be related to the fact that the sta-
tistical stability of the estimated spectra decreases with increasing
model order. And second, the FPE has a local minima at below 10, is
relatively flat up to p = 25, and decreases rapidly for p > 25. Based
on the average FPE, p = 30 would be chosen, however a comparison of the
spectra obtained for differing model orders indicates that this is not
acceptable since both the number of spurious peaks and statistical vari-
ability of the resulting spectra increase rapidly as p approaches N.
Clearly if the calculated responses are to be meaningful both the num-
ber of spurious peaks and the statistical variability of the response
must be controlled. This is particularly important when the responses
are based on single observations of the array outputs and no averaging
is performed. These problems are more acute at low SNR because the
signal peaks are relatively smaller, but they can be significant even at
high SNR when p is large. Even the average spectrum may be of marginal
value when the model order approaches N. Figures 3a and 3b compare the
average (over 50 data sets) spectrum at an SNR of 7 dB for p = 30, and
p = 15; clearly the spectrum is useless for p = 30 due to the number of
spurious peaks. At an SNR of -3 dB the largest model order producing a

(7) 1b1d. 1
(Text Continued on Page 11) \
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useful average wes p = 20, In any event, It appears that little (s
gained in terms of resolution or bearing estimation accuracy by choosing

p\lO.

As {n ordinary spectral estimations, the equivalent number of
degrees oi freedom of the array response may be estimated as

‘3
2ET(S (k)
\i{{(§({kff’ over all kx (10)
X

where R(S(kx)) and Var(S(ky)) are the mean and varfance of the maxi-
mum entropy array response, This quantity provides a measure of the
stat{stical stability of the response. Figure 4 {llustrates the depen-
dence of this quantity on the model order where the degrees of freedom
were estimated from the mean and variance of the response over the 50
data sets for the SNR and target separation indicated, This behavior
{s typical of the results observed. It {s apparent that the statis-
tical varfability of the array response increases vapidly as p ap~
proaches N. There are tfew theoretical results on the statistical
properties of autoregressive spectral estimates for comparison with
It has, however, been conjectured dby Parzen (1970) 1)
) that autogregressive modeled
§e p and N with p << N)

. The statistical sta-

these results,
and demonstrated by Kromer (l9h9)(1;
spectral estimates are asymptotically (for lar
distributed with v = N/p degrees of freedomt s
bility of the observed results is consistent with Parzen's conjecture
when p << N, but {s {ncreasingly less stable as p approaches N as was
expected from the asymptotic nature of the theoretical result.

It was concluded from observations that the best combination of

statistical stability and source resolution was obtained for p 10
although p = 5 may be acceptable {f the resolution requirements are not
Choosing p = 1/3 the number of array elements appears to be

stringent.
"optimum" choice depends on the SNR,

a good starting point although the

QD parzen, E., Multivariate Time Series Modeling, in "Multivariate
Time Series Analyvsis I1," #. R. Kirshniah, Ed., Academic Press, New

York, 1970,
‘13)Kromer, R. E., Asymptotic Properties of the Autoregressive Spectral
Estimator, Dissertatfon, Dept. of Statistics, Stanford University
1969,
““)Gursch, W. and Liu, R, ., Autoregressive Model Spectral Estima-

tion, Some Simulation Study Statistical Performance Results, in
"pProceedings of the RADC Spectrum Estimation Workshop,' May 1978,

(Text Continued on Page 13)
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number of data records available, and the desired resolution, as well
as the nature of the data. It is interesting to note that the choice
of p = 10 gives roughly the same stability as that obtained with con-
ventional beamforming with an unweighted aperture (conventional spec-
tral estimation with rectangular window).

i

BEARING ERROR

Source localization in azimuth is particularly important in many
applications. It appears that the maximum entropy procedure provides
excellent bearing estimates when the source of interest is well sepa-~
rated from other sources. :

Source bearing was estimated by locating the largest peak in the |
vicinity of the known source location. Table 1 indicates the total rms |

|
|
TABLE 1 ‘;
RMS DEVIATION OF PEAK LOCATION FROM TRUE BEARING ,
RMS Deviation*
Model Order
SNR (dB) Separation* 5 10 15
-9 ok 0.7 0.5 0.5
1.5 0.9 0.9 0.7
2,0 1.0 0.9 0.6
-3 o 0.2 0.2 0.2 !
1.5 0.8 0.6 0.2
2.0 K2 0.2 0.2
7 ® 0.1 0.1 0.1
1.5 0.9 0.2 0.2
2.0 0.1 0.1 0.1
{
. 17 © 0. 02 0.02 0.02 B |
: 1.5 0.2 0.2 0.2
2,0 0.05 0.05 0.04

*in multiples of A/D
**gingle source .

13
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deviation of the estimated bearings from the true bearing. The total
deviation error is a function of the model order, SNR, and target sepa-
ration. It tends to increase with decreasing SNR when the model order
is large and when the targets are not well resolved.

The total deviation error may be interpreted as consisting of two
parts: the bias or average error (over the 50 data sets) in source
location and deviations around this average. The bias is not signifi-
cant when: only a single source is present, appears to be relatively
unimportant for large separations, and tends to increase as the separa-
tion decreases. At high SNR the bias is the major source of error when
multiple sources are present. The deviations around the average increase
as the SNR decreases and is the major source of error for SNR < 0 dB
(provided the sources are resolved). It is interesting to note from
Table 1 that for isolated sources the errors for p = 5 are not signifi-
cantly greater than for p = 10 or 15. If resolution of multiple sources
is not required, p = 5 may be acceptable for source localization, and
as noted previously gives a considerably more stable response.

It is instructive to compare the isolated target results with the
Cr?msr-Rao lower bound on the rms error given (in multiples of A/D)
by b

_ 1 /1+N(SNR) 6
YQ  SNR 2n/N7-1

where Q is the number of independent time samples used in the estimate
(in this case Q = 1). The C-R lower bound is the limit for the per-
formance of any estimator. For §NR's of 17, 7, -3, and -9 dB the result-
ing C-R bounds are 1x107<, 3x107<, 1x10‘1, and 2x10-1, The results in
Table 1 for p = 10 are roughly twice the C-R bounds. This appears to
compare reasonably well with the results on maximum liklihood estimation
reported in Reference 1.

PEAK WIDTHS

Provided the targets were resolved, the 3 dB width of the response
to the fixed source was always much less than the response width for con-
ventional beamforming of 0.9 A/D., Even at SNR = 0 dB and p = 5 the
average response width to a single source was only 0.5 A\/D. The width
increased as the SNR or model order decreased, and as target separation
decreased.

(1) {bid.

i
|
\
!
|
i
|
s
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It is interesting to compare the observed single target response
widths with those which can be calculated theoretically. The expres-
sion for the 3 dB response width for maximum entropy array processing
may be obtained directly from the results obtained by Lacoss ¢*%) in the
time domain if the analogy between kx and f is noted, and between Ax
and At

2
By = Thxp? (SND) b

where ky is the 3-dB (wave number) width of the spatial response. This
is easily related to the angular width A8 since

1
kx s sin 6
Ak = l-cos A8 (12)
X A

= 2N (l)
m<(SNR) cosé ‘D’ °

Table 2 compares the predicted and observed angular widths for the

three SNR's when 6 = 0 (source located on the perpendicular bisector of
the array axis). Substitution of the appropriate model order predicts
widths somewhat less than those actually observed. This is not surpris-
ing because Equation (11) was derived assuming exact knowledge of the
signal autocorrelations rather than estimates,

A6

TABLE 2

BEAMWIDTH COMPARISON

Observed*

SNR (dB) p =35 p = 10 p =15 Calculated
17 8 x 1073 4 x 1073 3x10°3 | 3.9 x 10712

7 7 % 1072 3% 10 22 107% | 3.9 2 10°%°

-1 =1 -2 1,2

=3 9 x 10 3 x10 5 x10 3.9 x 107 /p

0 0 -1 22

-9 2 x10 1x 10 5 x 10 1.6 x 10°/p

*{n multiples of A/D

‘1‘)Lacoss, R. T., Data Adaptive Spectral Analysis Methods, Geophysics,
Vol. 36, No. 4, pp. 661-675 (August 1974).

15
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It should be noted that while the resolution of a conventional
beamformer is directly related to its response to a single point source,
this is not the case for maximum entropy processing since the algorithm
is nonlinear and superposition does not hold. It 18 sometimes stated
that the maximum entropy spectrum has no sidelobes., This can be mis-
leading since it applies only to an isolated source. There is, in fact,
a nonlinear interaction between components as evidenced by the changes
in response width as a fuaction of target separation which leads to
problems similar to those caused by sidelobes in conventional beamform-
ing. Based on the observed single target response it might be concluded
that the "resolution" was many orders of magnitude better than is actu-
ally the case,

Resolution is a difficult parameter to define for maximum entropy
spectra. When the target separation is small, it is often difficult to
determine if the observed peaks correspond to sources or are due to
noise. For the purposes of this study equal amplitude targets were con-
sidered to be resolved when there was a dip in average (over 50 samples)
response of 3 dB between peak responses to the targets. In general, the
results were as follows: the minimum resolvable separation (MRS) in-
creased as the SNR or model order decreased. The decrease in MRS with
SNR may be partially compensated for by increasing the model order,
however as noted previously, the number of spurious spectral peaks in-
creased rapidly as the model order increased. For model order 10 the
minimum resolvable separation (MRS) for SNR's of 17, 7, -3, and -9 dB
were 0,7, 1.0, 1.5, and 2 A/D. The MRS for model order 15 was only
slightly better while the MRS for a model order of 5 was roughly twice
that obtained with a model order of 10. In cases where the resolution
requirements are not extreme a low model order may be acceptable.

For comparison the minimum angular separation required at a high
SNR for the resolution of two equal amplitude in phase point targets
using conventional (delay and sum) beamforming if 1.4 A/D. An exten-
sive stud¥ of the resolution of sinusoids is described by Marple
(1976)¢3%), The average MRS reported is roughly one-half that reported
above'l®), While there are differences in the signals (real versus com-
plex) and the methods employed, it appears that this discrepancy is
primarily caused by the differing definition of resolution used in the
current study.

(18), Marple Conventional Fourier, Autoregressive, and Special ARMA
Methods of Spectrum Analysis, Engineers Dissertation, Department
of Electrical Engineering, Stanford University (1976).
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